Front-End Light Source for a Waveform-Controlled High-Contrast Few-Cycle Laser System for High-Repetition Rate Relativistic Optics
نویسندگان
چکیده
We present the current development of an injector for a high-contrast, ultrashort laser system devoted to relativistic laser-plasma interaction in the few-cycle regime. The front-end is based on CEP-stabilized Ti:Sa CPA followed by XPW filter designed at the mJ level for temporal cleaning and shortening. Accurate characterization highlights the fidelity of the proposed injector. Measured CEP drift is 170 mrad rms.
منابع مشابه
High-power multi-megahertz source of waveform-stabilized few-cycle light
Waveform-stabilized laser pulses have revolutionized the exploration of the electronic structure and dynamics of matter by serving as the technological basis for frequency-comb and attosecond spectroscopy. Their primary sources, mode-locked titanium-doped sapphire lasers and erbium/ytterbium-doped fibre lasers, deliver pulses with several nanojoules energy, which is insufficient for many import...
متن کاملGeneration, characterization and sub-cycle shaping of intense, few-cycle light waveforms for attosecond spectroscopy
Our desire to observe electron dynamics in atoms and molecules on their natural timescale with the tools of attosecond physics demands ever shorter laser pulse durations. The reliance of this young eld on laser pulses is understandable: both the generation and the characterization of attosecond pulses, as well as time-resolved measurements directly use the electrical eld that lasts only for a f...
متن کاملNonlinear relativistic optics in the single cycle, single wavelength regime and kilohertz repetition rate
Pulses of few optical cycles, focused on one wavelength with relativistic intensities can be produced at a kilohertz repetition rate. By properly choosing the plasma and laser parameters, relativistic nonlinear effects, such as channeling and electron and ion acceleration to tens of megaelectronvolts are demonstrated.
متن کاملIntense circularly polarized attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses.
We have investigated the polarization of attosecond light pulses generated from relativistic few-cycle laser pulse interaction with the surface of overdense plasmas using particle-in-cell simulation. Under suitable conditions, a desired polarization state of the generated attosecond pulse can be achieved by controlling the polarization of the incident laser. In particular, an elliptically polar...
متن کاملHigh repetition rate plasma mirror device for attosecond science.
This report describes an active solid target positioning device for driving plasma mirrors with high repetition rate ultra-high intensity lasers. The position of the solid target surface with respect to the laser focus is optically monitored and mechanically controlled on the nm scale to ensure reproducible interaction conditions for each shot at arbitrary repetition rate. We demonstrate the ta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013